Efficient Visible-Light Photocatalytic Properties in Low-Temperature Bi-Nb-O System Photocatalysts
نویسندگان
چکیده
Low-temperature Bi-Nb-O system photocatalysts were prepared by a citrate method using homemade water-soluble niobium precursors. The structures, morphologies, and optical properties of Bi-Nb-O system photocatalysts with different compositions were investigated deeply. All the Bi-Nb-O powders exhibit appreciably much higher photocatalytic efficiency of photo-degradation of methyl violet (MV), especially for Bi-Nb-O photocatalysts sintered at 750 °C (BNO750), only 1.5 h to completely decompose MV, and the obtained first-order rate constant (k) is 1.94/h. A larger degradation rate of Bi-Nb-O photocatalysts sintered at 550 °C (BNO550) can be attributed to the synergistic effect between β-BiNbO4 and Bi5Nb3O15. Bi5Nb3O15 with small particle size on β-BiNbO4 surface can effectively short the diffuse length of electron. BNO750 exhibits the best photocatalytic properties under visible-light irradiation, which can be attributed to its better crystallinity and the synergistic effect between β-BiNbO4 and α-BiNbO4. The small amount of α-BiNbO4 loading on surface of β-BiNbO4 can effectively improve the electron and hole segregation and migration. Holes are the main active species of Bi-Nb-O system photocatalysts in aqueous solution under visible-light irradiation.
منابع مشابه
Fabrication of Magnetically Recoverable Nanocomposites by Combination of Fe3O4/ZnO with AgI and Ag2CO3: Substantially Enhanced Photocatalytic Activity under Visible Light
We report highly efficient magnetically recoverable photocatalysts through combination of Fe3O4/ZnO with AgI and Ag2CO3, as narrow band gap semiconductors. The resultant photocatalysts were characterized by XRD, EDX, SEM. TEM, UV–vis DRS, FT-IR, PL, and VSM instruments. Under visible-light illumination, the nanocomposite with 1:6 weight ratio of Fe3O4 to ZnO/AgI/Ag2CO3 exhibited superior activi...
متن کاملThe Structural, Photocatalytic Property Characterization and Enhanced Photocatalytic Activities of Novel Photocatalysts Bi2GaSbO7 and Bi2InSbO7 during Visible Light Irradiation
In order to develop original and efficient visible light response photocatalysts for degrading organic pollutants in wastewater, new photocatalysts Bi₂GaSbO₇ and Bi₂InSbO₇ were firstly synthesized by a solid-state reaction method and their chemical, physical and structural properties were characterized. Bi₂GaSbO₇ and Bi₂InSbO₇ were crystallized with a pyrochlore-type structure and the lattice p...
متن کاملNovel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance.
Novel Bi(2)S(3)/BiOI heterostructures were successfully synthesized through a facile and economical ion exchange method between BiOI and thioacetamide (CH(3)CSNH(2)), and characterized by multiform techniques, such as XRD, Raman, FT-IR, XPS, SEM, TEM, HRTEM, SAED, BET and DRS. The obtained Bi(2)S(3)/BiOI photocatalysts showed excellent photocatalytic performance for decomposing organic dye meth...
متن کاملNitrogen doped TiO2 for efficient visible light photocatalytic dye degradation
In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...
متن کاملHydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue
Nb2O5 nanoparticles were synthesized by the hydrothermal method. Structural, morphological and elemental analysis of synthesized Nb2O5 nanoparticles was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy, respectively. The average crystal size calculations were performed on the basis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016